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Abstract. Periodic orbits that participate in a bifurcation contribute collectively to the periodic
orbit sum for the quantum density of states. The contributions of multiple windings of isolated
orbits are easily obtained from powers of the stability matrix, but it is generally hard to compose
the actions that determine the contributions of higher windings of a bifurcation. Here we derive
an approximate relation between the amplitude of the contributions of different windings for the
saddle-centre bifurcation and the period-doubling bifurcation.

The periodic orbit sum is one of the main tools for the study of spectral fluctuations in
quantum systems. Semiclassical periodic-orbit approximations have been derived for the
limitting cases of chaotic or integrable systems, where the orbits are either isolated or appear
in continuous families [1, 2]. Generic systems are harder to treat because of bifurcations
in which periodic orbits coalesce as a parameter is varied. In the case of a single quantum
map, one may hope to avoid bifurcations of short-period orbits, but for Hamiltonian systems
the energy itself is such a parameter, leading to complex sequences of bifurcations. The
joint contribution to the periodic orbit sum of orbits which participate in a bifurcation was
first derived by Ozorio de Almeida and Hannay [3], and subsequently refined by Schomerus
and Sieber [4].

In spite of these advances, there is no doubt that the collective contribution of bifurcating
orbits is much harder to evaluate than those of orbits whose actions differ by considerably
more than ¯h and can thus be considered to be isolated. This is specially true in the case
of higher windings, i.e. multiple iterations of the Poincaré map transverse to the periodic
orbits; given the linearization of the map around its isolated fixed point (where the periodic
orbit intersects the Poincaré section),(

Q′

P ′

)
= M

(
Q

P

)
(1)

the amplitudeAm of the contribution of themth winding of the periodic orbit is easily
determined since

Am ∝ |det(Mm − 1)| 12 . (2)

Thus, there is no further effort of retrieving classical information, once the first iteration
is dealt with. As the phase of the contribution is merely multiplied bym, it also becomes
possible to sum over a sequence of windings of a single orbit.
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In contrast, the contribution of orbits undergoing a bifurcation has amplitude

Am = (2π ih̄)−
1
2

∫
dP dQ
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1
2

exp

{
i

h̄
[Sm(P,Q, ε)− PQ]

}
(3)

whereSm(P,Q′, ε) is the normal form for the particular bifurcation in the classification of
Meyer [5] and Bruno [6] and the Poincaré map is implicitly defined by

Q′ = ∂Sm

∂P ′
P = ∂Sm

∂Q
. (4)

Beyond the unavoidable difficulty that the map cannot be reduced to its linear approximation,
we need to work out the relation ofSm to S1 for each winding. It is important to note that
here ‘1’ refers to the first winding of the Poincaré map at which the bifurcation manifests
itself, which may occur after several windings of the central periodic orbit. Because all
windings have a Poincaré map with the same fixed points (for a fixed parameterε), they will
be described by the same form of catastrophe integral (3), though with different amplitudes
and control variables.

The purpose of this letter is to relate the contributions of the various windings for two
fundamental bifurcations. Whereas isolated orbits can be described by quadratic generating
functions,

S(P,Q′) = PQ′ − εQ′ +Q′3+ P 2 (5)

is the normal form for thesaddle-centre bifurcationand

S(P,Q′) = PQ′ + εQ′2+Q′4+ P 2 (6)

for the period-doubling bifurcation. In the first case, a stable and an unstable orbit coalesce
and disappear asε → 0; in the second, a stable orbit of twice the period arises as the central
orbit loses its stability.

To evaluate further iterations, we derive the explicit maps corresponding to (5) and (6).
In the case of the saddle-centre bifurcation,

Q′ = Q− 2p P ′ = P − ε + 3Q′2. (7)

For a small bifurcation parameterε, the fixed points lie close to the origin. Thus, expanding
to the lowest order inQ, P andε, we obtain themth iteration as

Q(m) ≈ Q− 2mP and P (m) ≈ P −mε + 3m(Q(m))2. (8)

The corresponding generating function is hence

S(P,Q(m)) ≈ PQ(m) −mεQ(m) +m(Q(m))3+mP 2. (9)

The corresponding deduction for the period-doubling bifurcation leads to the map

Q(m) ≈ Q− 2mP P (m) ≈ P + 2mεQ(m) + 4m(Q(m))3 (10)

generated by

S(P,Q(m)) ≈ PQ(m) +mε(Q(m))2+m(Q(m))4+mP 2. (11)

We can now obtain the approximate amplitude for each winding by inserting (9) or (11)
into (3). However, the picture becomes clearer if we use instead the position generating
functions

S(Q,Q(m)) ≈ − 1

2m
(Q(m) −Q)2−mεQ(m) +m(Q(m))3 (12)
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(for the saddle-centre bifurcation) and

S(Q,Q(m)) ≈ − 1

2m
(Q(m) −Q)2+mε(Q(m))2+m(Q(m))4 (13)

(for the period-doubling bifurcation) in the single integral

Am =
∫

dQ

∣∣∣∣ ∂2Sm

∂Q∂Q(m)
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1
2

exp

{
i

h̄
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}
. (14)

Though this form fails for the identity transformation, it need not have been discarded in [3].
Instead, it results from the evaluation of the Gaussian integral inP in (3), sinceSm(Q,Q)
is just the Legendre transform ofSm(P,Q). The result is that the amplitudes now depend
on single Airy [7] and Pearcey integrals [8, 9] where the phase is merely multiplied by the
winding numberm. Note, however, that the amplitude is divided bym

1
2 , indeed
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2
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}
. (15)

Equation (15) is the main result of this letter. The contributions to the periodic-orbit sum
will not be as accurate as the full uniform approximation of [4], but we can now understand
the relative contributions of the successive windings. Indeed, we obtain,

Am(ε, h̄) ≈ h̄ 1
3m−

5
6A1

(
ε
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)2
3
, 1

)
(16)

for the saddle-centre bifurcation and

Am(ε, h̄) ≈ h̄ 1
4m−

3
4A1

(
ε
(m
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)3
4
, 1

)
(17)

for the period-doubling bifurcation. In both cases, the higher windings behave effectively
as a reduction of Planck’s constant. The result is an apparent increase of the bifurcation
parameter. For sufficiently large windings, the periodic orbits can be treated as independent
even when the lower windings must be considered collectively. This agrees with the general
criterion that it is the action difference between the periodic orbits (multiplied by their
winding number) that distinguishes between the two regimes. Now we find a simple rule
for evaluating the contributions of many windings from the normal form of the first winding,
even in the nonlinear regime.
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